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STOCHASTIC SHOP SCHEDULING :A SURVEY

Michael Pinedo
Georgia Institute of Technology

Linus Schrage
University of Chicago

ABSTRACT

In this paper a survey is made of some of the recent results in
stochastic shop scheduling. The models dealt with include:
(M) Open 5:s.
(ii) Flow s-:-.s with infinite intermediate storage (permutation

flow sh-ops).
(iii) Flow s-zps with zero intermediate storage and blocking.
(iv) Job shDps.
Two objectivr: functions are considered: Minimization of the ex-
pected iz-,i-on time of the last job, the so-called makespan
and cini-:iztoime of the sum of the expected completion times of
all jobs, the so-called flow time. The decision-maker is not
allowed to preempt. The shop models with two machines and expo-
nentially distributed processing times usually turn out to have
a very nice structure. Shop models with more than two machines
are consideraIy harder..-_

1. INTRODUCTION AND SUkQ4AY

In this paper an attempt is made to survey the recent results in
stochastic shop scheduling. Four shop models are considered; a
short description of. these follows.
(i) Open Shops. We have n jobs and m machines. A job re-
quires an execution on each machine. The order in which a job
passes through the machines is immaterial.
(ii) Flow Shops with Infinite Intermnediate Storage. We have n
jobs and m machines. The order of processing on the different
machines is the same for all jobs; also the sequence in which the
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jobs go through the first machine has to be the same as the se-
quence in which the jobs go through any subsequent machine, i.e.
one job may not pass another while waiting for a machine. A
flow shop with these restrictions is often referred to as a
permutation flow shop.
(iii) Flow Shops with Zero Intermediate Storage and Blocking.
This shop model is similar to the previous one. The only dif-
ference is that now there is no storage space in between two
successive machines. This may cause the following to happen:
Job j after finishing its processing on machine i cannot leave
machine i when the preceding job (job j-l) still is being pro-
cessed on the next machine (machine i+l); this prevents job j+l
from starting its processing on machine i. This phenomenon is
called blocking. 

1*
(iv) Job S;;os. We have n jobs and m machines. Each job has
its own machide order specified.

Throughout this paper will be assumed that the decision-
maker is not allowed to preempt, i.e. interrupt the processing
of a job on a machine. For results where the decision-maker is
allowed to preempt, the reader should consult the references.
In this paper two objectives will be considered, namely (i) min-
imization off the expected completion time of the last job (the
so-called mak espan) and (ii) minimization of the sum of the ex-
pected comp=i ion times of all jobs (the so-called flow time).

This survey is organized as follows: In Section 2 we
give a short d'escription of the most important results in deter-
ministic shz scheduling (without proofs). The purpose of this
section is r: enable the reader to compare the results for the
stochas-:_I versions of the different models, presented in Sec-
tion 3, wiz their deterministic counterparts. For the stochas-
tic models iz Section 3 we will not present any rigorous proofs
either. However, we will provide for each model heuristic argu-
ments that -ay rmake the results seem more intuitive. In Section
4 we discuss the similar4ties and differences between the deter-
ministic-'and the stochastic results.

The notation used in this paper is the one developed by
Graham et al (5). For example, p.. represents the processing
time of job j on machine i. When his processing time is a ranm-
dom variable it will be denoted by p... A second example: 021
pjj - exp(l) IE(Cmax) represents a tUo machine open shop where
the processing times of each job on the two machines are random
variables, exponentially distributed with rate one and where the
objective'to be minimized is the expected makespan (E(Cmax)).

At
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2. DETER.IINISTIC SHOP MODELS

This section consists of three subsections: In the first sub-
section we deal with open shops, in the second one with flow
shops and in the last one with job shops.

2.1 Deterministic Open Shops

Consider the two machine case where the makespan has to'be mini-
mized. In (5) this problem is referred to as O1ICmax. Gonzalez
and Sahni (4) developed an algorithm that finds an optimal se-
quence in O(n) time. We present here a much simpler method that
appears to be new.

Theorern 2.1.2. Let Phk = max(p-j, i=l 2, j=l,...,n). The fol-
lowing schedule minimizes the makespan: If h=2(1), job k has to

be started at t=O on machine 1(2); after finishing this proces-
sing on machine 1(2) job k's processing on machine 2(1) has -to
be postponed as long as possible. All other jobs may be pro-
cessed in an arbitrary way on machines I and 2. Job k may only
be started on machine 2(1) either when no other job remains to be
processed on machine 2(1) or when only one other job needs pro-
cessing on =achine 2(1) but this job is just then being processed
on machine (2).

Th.e rear should have little difficulty in proving this
theorem. GCnzalez and Sahni (4) showed that the open shop prob-
lem wi:h z=re :han two machines is NP-complete.

2.2. Dezer-inisic Flow Shops

Consider first the two machine flow shop with infinite intermed-
iate storage between the machines. We are interested in minimi-

zing the =akespan. This problem is usually referred to as
FZ1C~ax . 7 ohnson (7) developed the well-known rule for obtain-
ing the oi sequence in this problem.

Theorer 2.2.1. The sequence, that puts the jobs with pi 1 P2*
first, in order of nondecreasing pl, and puts the remaining.jobsI afterwards, .in order of nonincreasing P2j, is.optimail.

When there are more than two machines in series, the prob-
lem is NP-complete (see Gary et al (3)). Research in this area
is still going on, focussing mainly on enumerative methods. One
special case, however, is easy: Consider the case where theIprocessing times of job i, i=l,...,n at all m. machines is Pi.
In practice such a situation would occur ina communication
channel where messages do not change in length when they pass
from one station to the next. For this special case Avi-Itzhak
(1) established the following theorem.
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Theoren 2.2.2. When pl:p2.= =...=pmj for j=l,...,n any sequence
is optimal.

Reddi and Ramamoorthy (14) considered the flow shop with
zero intermediate storage and blocking. This problem is not
covered in the survey paper of Graham et al (5). We will refer
to this flow shop problem as FlblockinglCmax. Reddi and Rama-
moorthy (14) found that P21blockinglCmax can be formulated as a
Travelling Salesman Problem with a special structure, a struc-
ture that enables one to use an O(n2) algorithm.

2.3. Deter=i nistic Job Shops

Consider the two machine case J21Cmax* In this two machine

model one set of jobs has to be processed first on machine 1 and
after that on machine 2. This set of jobs will be referred to
as set A. A Second set of jobs has to be processed first on
machine 2 and after that on machine i. This set of jobs will be
referred to as set B. Jackson (6), using Johnson's al oritn
for P21 ICmx , for obtaining the optimal schedule in J2 l [
T;eoer 2.-.Z. The following schedule is optimal: All the jobs
of set A (B) are to be processed on machine 1 (2) before any job
of set B ,A. is to be processed on machine 1 (2). The jobs of
set A (B) are to be processed on machine 1 (2) in the following
order: The j:bs with p1 j : P2 (P2j " 5.Pl first in order ofnon.de=re :! (Zj and the remanin

noi ta remaining jobs afterwards inorder of nzc_-reasing pl pj.The order in which the jobs

of set A (B) are processe- on -achine 2 (1) does not affect the
makes n.

Job shots with more than two machines are NP-complete, even
when all prozessing times are equal to one. But a considerable
anount of effort has been dedicated to the research in enumera-
tive =ethods (see McMahon and Florian (8)).

3. STOCHASTiC SHOP MODELS

This section consists of four subsections: In the first subsec-
tion we deal with stochastic open shops. In the second one with
stochastic flow shops with infinite intermediate storage between
the machines. In the third one we consider stochastic flow
shops with zero intermediate storage and blocking. In the last
subsection stochastic job shops are considered.

3.1. Stochastic Open.Shops

In this subsection we assume that there are two machines avail-
able to process n jobs. Each job has to undergo operations on

4
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both machines, the order in which this happens being immaterial.
Every time a machine finishes an operation the decision-maker

has to decide which job will be processed next on the machine
just freed. A policy prescribes the decision-maker which ac-

tions to take at the various decision moments; such an action at
a decision moment depends on the state of the system at that
moment. Observe that a policy only has to instruct the

decision-maker what to do as long as there are still jobs which

have not ygt undergong processing on either machine. This is
true for the following reason: When machine 1 (2) becomes free,
the decision-maker otherwise only can choose from jobs which
have to be processed only on machine 1 (2) and the sequence in
which these jobs will be processed on machine 1 (2) does not

affect the makespan. Clearly

n nc zax ( Ph,' X I2)
max j =i j =

When one machine is kept idle for some time in between the opera-
tions of two jobs, the makespan may be strictly larger than the
R.H.S. of the above expression. We may distinguish between two
types of idle periods, see Figure 1.

job j

J2 Idle period
* of type I

J 
job j

job j

Idle period
of type II

I1 job j

Figure 1

L_ -
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In an idle period of type II, a machine is kept idle for some
time, say J1, then processes its last job, say job j, and fin-

ishes processing job j while the other machine is still busy
processing other jobs. it is clear that, although a machine has
been kept idle for some time, Cmax = max p. In anC j, p2 " na
idle period of type I, a machine is kept idle for some time, say
J1, then processes the last job, say job j, and finishes proces-
sing this job some time, say J2, after the other machine has
finished all its jobs. Now

n n
Cmax = max ( I p2 .)+rinJ

.1-1j '1 P2 +mn(."2

It can be verified easily that only one job can cause an idle
period and an idle period has to be either of type I or type II.
As the first term on the R.H.S. of the above expression does not
depend on the policy, it suffices to find a policy that mini-
mizes E(min (J1,J2)).

We will ccnsider now a special case of the two machine open
shop nodel, nanely the model 021Plj - exp(vtj)IE(Cmax), where the
operations of Job j on the two mac ines are independent and ex-
ponentially distributed, both with rate Pj. From the explanation
above it appears intuitive that, in order to minimize the proba-
bility that an idle period of type I occurs, jobs that have not
received any processing at all should have higher priority than

the jobs tha: already have received processing on the other
machine. Moreover among the jobs that have not yet received any
processi-n a- all, those with smaller expected processing times
should be prccessed more towards the end. In fact, for O2

- exp(ug) E(Cmax) the following theorem has been shown in
Pinedo an-' :ss (13).

YTeorem 3.1.2. The policy that minimizes the expected makespan
is the policy which, whenever any one of the two machines is
freed, instructs the decision-maker:

(i) When there are still jobs which have not yet received pro-
cessing on either machine, to start among these jobs the one
with the largest expected processing time and
(ii) when all jobs have been processed at least once to start
any one of the jobs still to be processed on the machine just
freed.

Consider now the model O2[Pij - Gi!E(Cmax). In this model
we have n identical jobs and two machines. These two machines
have different speeds. The distribution of the processing time
of a job on machine i, i=1,2, is Gi . We assume that Gi, i=1,2,
is New Better than Used (NBU), i.e.

ai(x+y)/Gi(x) :5 Gi(y) x 2 O, y -2.
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Under this assumption the following theorem can be proven (see
Pinedo and Ross (13)):

Theorem 3.1.2. The makespan is stochastically minimized if the
decision-maker starts, whenever a machine is freed, when possi-
ble with a job which has not yet been processed on either
machine.

The proof of this theorem is a proof by induction, on which we
shall not elaborate here. However, the special case 02Ipij -

exp(1)IE(Cmax) can be analyzed further. For this model the fol-
lowing closed form expression for E(Cmax) under the optimal pol-

icy can be obtained:

E(C )j:= 2n - Ik(l))+ 2i)

This expression is obtained by calculating the probability of
each job causing an idle period of type I.

Up to now the only objective *-inder conzideration has been
minimizatinn of expected makespan. Our second objective is min-
imization of expected flow time, i.e. E(EC-). Consider the
model 021Pj - exp(ji)IE(ECj): Again we have n identical jobs
on two machi-es with different speeds. For the case where the
processing ti-Es on nachine i, i 1,2, are exponentially distri-
buted with rate pi, we have the following theorem (see Pinedo
(9)):

T' neorernr 3.1.3. The flow time is stochastically minimized if the
decision-zak'-er starts, whenever a machine is freed, when possible
with a job that already has been processed on the other machine.

3.2. Stochastic Flow Shops with Unlimited Intermediate Storage
Between 'achi-es

in this subsection we consider m machines and n jobs. The n jobs
are to be processed on the m machines with the order of proces-
sing on the different machines being the same for all jobs. Each
job has to be processed first on machine 1, after that on machine
2, etc. At t=O the jobs have to be set up in a sequence, in
which they have to traverse the system. We want to determine the
job sequence that minimizes either E(C.ax) or E(ECj).

We will consider first the case m=2. In Figure 2 is depic-
ted a realization Of the process. Intuitively we may expect that
in order to minimize the expected makespan, jobs with shorter
expected processing times on machine I and larger expected pro-
cessing times on machine 2 should be scheduled more towards the
beginning of the sequence, while jobs with larger expected pro-
cessing times on machine I and shorter expected processing times

"'
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machine 1 ,:. NXN.K L
waiting room f .h

machine 2 / .-.-... ::'.

Figure 2

on machine 2 should be scheduled more towards the end of thesequence. In the deterministic version of this problem the

optimal sequence is determined by Johnson's rule. Bagga (2)
considered P21vij - exp(uij)IE(Cmax) i.e. the case where the
processing times are exponentially distributed, and proved,
through an adjacent pairwise switch argument, the following
theorem.

Thtorem 3.2.1. Sequencing the jobs in decreasing order of

U1J - V2j =_iniizes the expected makespan.

This theore_ implies that when the processing time of job j on
m-chine (2,. is zero, i.e. P 1j (P2 = ) I it has to go first
(last). If t*nere is a number of jobs with zero processing times
on machine 1, these jobs have to precede all the others in the
sequence. The sequence in which these jobs go through machine 2
des not af'fat the makespan. A similar remark can be made if
there is more than one job with zero processing time on
machine 2.

One special case of the flow shop model is of particular
importance, namely the case where the processing times of a job
on the different machines are independent draws from the same
distribution, i.e. FlPi - G-IE(Cnax) and FIJij - GjIE(Zc3 ). Of
this case one can easily fina examples in real life: Consider a
communication channel, where messages do not lose their identity
when they pass from one station to the next. From Theorem 3.2.1
follows that for the model F21Pij - expoi)JE(Cmax ) (any sequence
will be optimal. Weber (15) c8nsidered FIpij - exp(tj) E(Cmax) ,
the case for an arbitrary number of machines. With regard to
this model he showed the following theorem.

tTheorem 3.2.2. The distribution of the makespan does not depend
on the sequence in which the jobs traverse the system.I[!..
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In Theorem 2.2.2 was stated that in the case where the G-

j=l,...,n, are deterministic, not necessarily identical, the
makespan does not depend on the job sequence either. This pro-
perty which holds for the exponential and deterministic distri-
butions does not hold for arbitrary distributions. One can
easily find counterexamples. In (10) Pinedo considered other
examples of F1i- - G.IE(Cm  ). Before discussing the results'
presented in i03 we need two definitions:

Definition 1. A sequence of jobs jl,j 2 ,-..,j n is a SEPT-LEPT
sequence if there exists a k such that

E (p E ... E(p )
and

E (pi E(p ii k- 1) -  ' E~h (pi).
(observe tta: both the SEPT and the LEPT sequences are SEPT-LEPT
sequences.)

Definition 2. Distribution G1- and GZ are said to be nonoverlap-

pingly orderei if P(Pik ? PiyT is either zero or one. This im-
plies that the probability density functions do not overlap.

Based on thew to definitions we can present the following theo-
rem concen.n. Fipj - Gj IE(Cmax).

Ther-e'. .. 7. For n jobs with nonoverlapping processing time

distriuti -. s, any SEPT-LEPT sequence minimizes the expected
M.e sn an

Note that this theorem does not state that SEPT-LEPT sequences
are the only Sequences that minimize E(Cmax). However it is
i-ortant to observe that E(C-ax) does depend on the sequence
and that there are sequences which do not minimize E(Cmax). The
next theorem, also concerning FIPij - G IE(Cmax), gives us some
idea of how the variance in the processing time distributions
affect the job sequences that minimize E(Cmax).

Theore.a 3.2. 4. Let n-2 jobs have deterministic processing
times, not necessarily identical, and let 2 jobs have nondeter-
ministic processing time distributions. Then, any sequence that
schedules either one of the stochastic jobs first in the sequence
and the other one last minimizes the makespan stochastically.

Based on Theorems 3.2.3 and 3.2.4 and'some computational
results the following rule of thumb for Flpij - GjE(Cma ) was
stated in (10): Schedule jobs with smaller expected processing
times and larger variances in the processing times more towards
the beginning and towards the end of the sequence and schedule
jobs with larger expected processing times and smaller variances
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more towards the middle of the sequence. This implies that the
optimal sequences have a unimodal form, both as a function of
the expectations of the processing time distributions and as a
function of the variances of the processing time distributions.
Because of this form these optimal sequences may also be referred
to as "bowl"-sequences.

Observe that for the problem FIPij - G jE(EC ) when the
processing time distributions of the-jobs are nonoverlapping the
SEPT sequence is the only optimal sequence.

Instead of different jobs on identical machines we will
consider now the case of identical jobs on different machines,
i.e. the processing times of the jobs on a machine are indepen-
dent draws from the same distribution. The objective now is to
find the optimal machine sequence (the machine sequence that
minimizes the expected makespan) instead of job seouence. This
model, which also can be viewed as a tandem queueing "odel where
n customers =re waiting at time t=O, will be referred to as
Flp - G!E(C ). It can be shown easily that interchanging
mhines a- Ls i.e. transforming FlPij - GjIE(Gmax) into
Flp.-. GIEC ma) , results in a problem with exactly the same
strW4_turea So for Fipi. - GiIE(Crax) Theorems 3.2.3 and 3.2.4,
after rep'azins the wor s "jobs" for "machines", also hold. One
should observe now that the optimal machine sequences stated in
these t-n not only minimize E(Cmax), but minimize E(C-) for
all j=l,....n. So these machine sequences also minimize EZCi)
(for -E - E(ZC.) with nonoverlapping processing time di:-
tributi~n SEri was he cnly job sequence that minimized E(EC-)).

3.3. Stczh :ic Flow Shoos with Zero Intermediate Storage
Between '.achines

Thn model in this subsection is rather different from the model
in the preceding subsection as now there is no intermediate
storage space between the machines. This may have the following
consequences: When job j has finished its processing on machine

but canno: be further processed because job j-1 is still being
processed on machine i+l, job j will be held on machine i. How-
ever, as long as machine i is holding job j, job j+l may not
start its processing on machine i, i.e. job j+l may not leave
ma-chine i-l. This phenomenon is called blocking. Then raodel.s
will therefore be referred to as FlblockingJE(Cr ) and Fjblock-
ing IE ( EC j).

Again, we consider first the. case m=2. It is clear that
whenever a job starts on machine 1, the preceding job starts
on machine 2. Let the total time during [O,Cmax ] that only one
machine functions be denoted by I, which is equivalent to the
total time during [0,Cmax ] that one machine is not busy

• ~ ~~ . "''-
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processing a job. A machine is idle when either a machine is
empty or when a job in the first machine is being blocked by a
job in the second. During the time period that job j occupies
machine 1, there will be some time that only one machine is pro-
cessing a job: In case p. > p• machine I will keep on pro-
cessing job j the moment-job jZ leaves machine 2. When pi, <

P2j-1 machine 2 will still be processing job j-1 after job j has
finished on machine I. Minimizing E(Cmay) is equivalent to min-
mizing E(I) which is equivalent to maximizing the total expected
time that both machines are busy processing jobs. Based on this

analysis the following result was shown in (10).

Theormn 3.3.. Minimizing E(Cmax) in F2Iblocking!E(Cmax) is
equivalent to Mcximizing the total distance in the following
deterministic Travelling Salesman Problem. Consider a travelling
salesman who starts out from city 0 and has to visit cities

1,2,...,n and return to city 0, while maximizing the total dis-
tance trayell a, where the distance between cities k and I is
defined as follows:

e 0

d 0

d (rain (p, ). k#O I1O

Ohse-::'-t when the processing times on the two machines
are e _nna-1y distr hibuted the distance matrix of the TSP has
a ver- n.:e - ucture.

C~sidar .ow the model F21blocking, Pij GjIE(Cmax) where
the -rozess- times of a job on the different machines are in-
depenent dra-..s from the same distribution. We will say that
G- i stochaz-ically larger than k GI >st G., when P(pi>t) >
P Pik>t) fcr all t. Again, by minimizing E(I) the following
theore- can be shown, see (10).

0. 7 . .. When G1 >st G2 ->st "--st Gn and n is even job
sequ-nces n,n-2,n-4 ,.. .,4,2,l,3,5,. .. ,n-3,n-l and n-l,n-3,...,
5,3,1,2,4,... ,n-4,n-2,n minimize E(Cmax). When n is odd job

sequences n,n-2,n-4,...,3,1,2,4,...,n-3,n-1 and n-l,n-3,...,
4,2,l,3,5,...,n-4 ,n-2,n minimize E(Cmax)-

Note that the sequences stated in this theorem are SEPT-LEPT
sequences and therefore "bowl"-sequences. This theorem gives us
some indication of how the optimal job sequence is influenced by
the expected proces-;ing times.

Now we will discuss the influence of the variance in the
processing times given that the expected values of the processing

I



times of all jobs are equal, say p. Consider the following spe-
cial case: Let the probability density functions of the proces-
sing times be synmetric around the mean P. This implies that
the random variables have an upper bound 2p. We will say that
the processing time of job j is more variable than the proces-
sing time of job k, Gj >V Gk, when G-(t) > Gk(t) for 0 S t S p and
(because of sy'metry) Gj(t) < Gk(t) for I1 5 t s 2p. Distribu-
tions which satisfy these sytmetry.conditions are:
(i) The Normal Distribution, truncated at 0 and at 2p
(ii) The Uniform Distribution.
The probability density functions of these distributions are
depicted in Figure 3.

f (x)

o p 21

f Cx) lSI

o 2

Figure 3

Tneorem 3.3.3. When G, Cv G2 Cv .. Cv Gn and when n is even
job sequences n,n-2,n-4,..., 4 , 2 ,1, 3 ,5,...,n-3,n-l and n-l,n-3,
...,5,3,l,2,4,...,n-4 ,n-2,n minimize E(Cmax). When n is odd
job sequences n,n-2,n- 4 ,...,3,1,2,4,...,n-3,n-I and n-i,n-3,...,
4,2,1,3,...,n-4,n-2,n minimize E(Cmax).

. ..



So from Theorems 3.3.2 and 3.3.3 we observe that here too "bowl"-

sequences are optimal and therefore the rule of thumb stated in
subsection 3.2 would be valid here, too.

In (10) Pinedo also considered Fiblocking,pij ~CjIE(Cmax).
For this problem a theorem very much like Theorem 3.2.3 could be
proven.

Theorem 3.3.4. For n jobs with nonoverlapping processing time

distributions a job sequence minimizes E(Cmax) if and only if it
is SEPT-LEPT.

So this theore=, too, emphasizes the importance of "bowl"-Isequences. In (10) the author was unable to present a theorem
similar to Tneorem 3.2.4. However, the following conjecture was
stated.

Conjecture. Let n-2 jobs have identical deterministic proces-
sing times, say with unit processing times and let two jobs have
nondeter--inis-ic processing times with symmetric probability
density funzions and mean one. Then, any sequence which sche-
dules either one of the stochastic jobs first and the other one
last miniize-s E(Ciax).

Obse -e t'at for Fiblocking, pij - GIE(EC.), when the pro-
cessing ti es of the jobs are nonoverlappingly aistributed, the
SET snyu 4sz£ Ls the only optimal sequence.

Consider now again the case of n identical jobs and m dif-
ferent nach.ns. This in=lies that the processing times of the
jobs on the ifZferent =achines are independent draws from the
sane ir :ion. Again, we would like to know the optimal
order in whizh to set up the machines in order to minimize
E(Cmax). This model will be referred to as Flblocking,pij - Gil
E(C.ax). in subsection 3.2 it was mentioned that, in the case of
infinite internediate storage, interchanging jobs and machines
results in a =odel with exactly the same structure. With block-

howeer, interchanging nachines and jobs does change the
structure of the model significantly. In (11) Pinedo showed the
following result with regard to Fjblocking, pij - GCiE(Cma.).

Tneorem 3.3.5. The expected makespan of u jobs in a system
with m-2 identical deterministic machines with unit processing
times and 2 nonidentical stochastic machines, both'with mean one
and symmetric density functions, is minimized if one of the sto-
chastic machines is set up at the beginning of the sequence and
the other at the end of the sequence.

This theorem appears to be the perfect dual of the conjecture
stated before. The next theorem, however, will illustrate the

I _ _ _ _ _ _
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difference between Flblocking,pij ~j-E( and Fiblocking ,

- j - GiIE(CYax). - jECmax)anFbocng

Theorem 3.3.6. The expected makespan of n jobs in a system withI m-2 identical machines with distributions C 1 and two identical
machines with distribution C2 , where C2 is nonoverlappingly lar-
ger than G1 , is minimized, when one of the two slow machines is
set up at the beginning of the sequence and the other one at the

end of the sequence.

This theorem is quite different from Theorem 3.3.4. Based on
these last two theorems, some other minor results and extensive
simulation work, it appeared that the optimal machine sequences
are not "bowl "-sequences but so-called "sawtooth"-sequences.
These may be described as follows: Suppose we have m-l identi-
cal machines with distributions GI and m identical machines with
distribution G2 (for a total of 2m-1 machines), where G2 is non-
overlappingly larger than G 1, then we conjecture that the optimal
machine sequence puts a slow machine at the beginning of the
sequence, followed by a fast machine in the second place, a slow
machine in the third place, etc. This sequence has the shape of
a "sawtooth". Suppose now we have m-l identical deterministic
machines with unit processing times and m identical machines with
mean one and s\ _=etric density function, then we conjecture that
the optimal. sequience puts a stochastic machine at the beginning
of the sequence, followed by a deterministic machine in the
second p2az , stochastic nachine in the third place, etc.
This seq:en:. too, has the shape of a "sawtooth".

3.4. Stochas:iz Job Sho~s

Very little urk has been done on stochastic job shops. The
main reason is that these models are even harder than the sto-
chastic flcw shops with infinite intermediate storage between
machines; these flow shops are just very special cases of job
shops. The only result known up to now concerns J21Pij - exp

6.ip) E(Cde " In this two machine model one set of jobs has to
be procasad first on machine I and after that on machine 2.
This set of jobs will be referred to as set A. A second set of
jobs has to be processed first on machine 2 and after that on
machine 1. This set of jobs will be referred to as set B. In
(12) Pinedo showed that Bagga's Theorem for F2In.3 - exp (Pij)l

can be eneralized into a theorem for Jijp.. - exp(U i )
E(Cmax)c However, for J2-pij - exp(Pii)IE(C x) w3ecannot speak

E(ma).Hoevrfo.JI j max

anymore of an optimal sequence, we have to speak of an optimal
policy which instructs the decision-maker in any state what
action to take.

Theorem 3.4.1. The optimal policy instructs the decision-maker,
whenever machine 1 (2) is freed, to start processing of the

I
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remaining jobs of set A (B) that did not yet undergo processing
on machine 1 (2) the one with the highest value of P . - 11.

(P23-plP) If no jobs of set A (B) remain that did not yet
undergo processing on machine 1 (2), the decision-maker may
start any one of the jobs of set B (A) that already have finished

their processing on machine 2 (1).

4. CONCLUSIONS

It is clear that the stochastic shop scheduling problems are not
all that easy. The two machine models with exponential proces-
sing times are in general tractable, just like the two machine
models with deterministic processing times. For the determinis-
tic versions of F2IICax and J211Cmax the algorithms are
O(n log n); for the versions of F211E(Cmax) and JZ IE(Cmax) with
exponential processing times the algorithms are also O(n log n).
For the de:-_inistic version of 0211Cmax the algorithm is O(n).
The version of 021 IE(Cmax) with exponentially distributed proces-
sing ti-es is harder. For the special case O21Pij - exp(uj)i
E(Cmax) the algorithm is already O(n log n). We have not yet

been able to determine the complexity of the more general case
2IPj - exp(.j)IE(Cmax) M:odels with three machines or morerij I02 'C miJ

appear o oc very hard. Only results of a qualitative nature
were obtain,d e.g. "bowl"-sequences, "sawtooth"-sequences).
This j- 7 i-_plexity when we go from two machines to three
occurs a- . he the processing times are deterministic; non-

s.-.c7 scheduling with three or more machines are con-
sistently :-_plete.
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I CORRECTIONS

P. 2 line 47 variables, exponentially distributed with rate one and where the

P. 6 line 23 shop model,.namely the model O21p1 j - exp(1j)E(Cmax), where-the_ r
P. 6 line 23 shop model, namely the model O21Pj - exp(pj)IE(Cmax), where the

I P. 7 line 13 exp(l)IE(Cma x) can be analyzed further. For this model the fol-
P. 7 line 14 lowing closed form expression for E(Cmax) under the optimal pol-

P. 7 line 23 Up to now the only objective under consideration has been

P. 7 line 24 minimization of expected makespan. Our second objective is min-

P. 7 line 15 icy can be obtained:

P. 8 line 4._  distribution, i.e. FIpij - GjlE(Ca.) and Flpij - GjIE(ECj). Of

P.10 line 7 Because of ?his form these optimal sequences may also be referred

P.11 line 22.5 d 0
kO

P.11 l--e24 dO = 0

P. 6 line 2 shop ode., na.zely the model O2Ip lj - exp(Ij)E(Cmax), where the

P. _ line Tr. 3. . The optimal policy instructs the decision-maker,
P. 14 !Ln 5 whenever - 1 (2) is freed, to start processing of the

I7

P. 12 line 4 - Vneore 3.3.3.

P. 2 ] -e z hC_i . en G-1 < G I ... Gn Ad wher n is even
P. 4 line 22 for F21IC., obtained an optimal schedule for 3211c,

I P. 12 line 5 Theorem 3.3.3. When GI :5v G2 v "... < V Gn and when n is even

P. 10 line 4i machine i-1. This phenomenon is called blocking. These models

F. 16 line 1" in preparation.

P. 16 line 14 Georgia Institute of Technology, Technical Report.-
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